Current Issue : July-September Volume : 2024 Issue Number : 3 Articles : 5 Articles
In response to the high-noise, nonlinear, and nonstationary characteristics of vibration signals from aircraft environmental control system (ECS) turbofan rolling bearings, this paper proposes a diagnostic method for the degree of ECS turbofan bearing faults based on the Hidden Markov Model (HMM). Experimental results demonstrate that HMM can accurately diagnose and predict faults in ECS turbofan rolling bearings. The HMM method enhances diagnostic accuracy, and its effectiveness and feasibility in fault diagnosis based on different rolling bearing fault instances are elaborated. By employing the HMM model to establish precise models from decomposed dynamic data, it successfully identifies faults such as the fracture of the bearing cage under biased load conditions, although its performance in recognizing overheating faults is suboptimal....
The hardness and wear resistance of the surface of TC4 titanium alloy, which is widely used in aerospace and other fields, need to be improved urgently. Considering the economy, environmental friendliness, and high efficiency, Si-reinforced Ti-based composite coatings were deposited on the TC4 surface by the high-speed wire-powder laser cladding method, which combines the paraxial feeding of TC4 wires with the coaxial feeding of Si powders. The microstructures and wear resistance of the coatings were analyzed using X-ray diffraction (XRD), scanning electron microscopy (SEM), Vickers hardness tester, and friction and wear tester. The results indicate that the primary composition of the coating consisted of α-Ti and Ti5Si3. The microstructure of the coating underwent a notable transformation process from dendritic to petal, bar, and block shapes as the powder feeding speed increased. The hardness of the composite coatings increased with the increasing Si powder feeding rate, and the average hardness of the composite coating was 909HV0.2 when the feeding rate reached 13.53 g/min. The enhancement of the microhardness of the coatings can be attributed primarily to the reinforcing effect of the second phase generated by Ti5Si3 in various forms within the coatings. As the powder feeding speed increased, the wear resistance initially improved before deteriorating. The optimal wear resistance of the coating was achieved at a powder feeding rate of 6.88 g/min (wear loss of 2.55 mg and friction coefficient of 0.12). The main wear mechanism for coatings was abrasive wear....
This paper presents a methodology that involves the development of high-fidelity modeling and simulation procedures aimed at supporting virtual certification for crashworthiness requirements specific to tiltrotor aircraft, addressing the critical need for accurate safety requirement fulfillment predictions and weight containment of wing. The unique crashworthiness requirement for tiltrotor wings necessitates a design that can ensure a controlled failure during survivable crash events. This is to alleviate the inertial load acting on the fuselage, thereby protecting occupants from injuries and fire while ensuring the integrity of escape paths. The objective of this methodology is to simulate the crash effects on the entire wing using explicit, non-linear, and time-dependent FE analysis. This approach verifies the spanwise placement of the frangible sections, the mode of failure, the loads acting on the fuselage links, and the acceleration transmitted to the structure. This study focuses on a standalone analysis....
In this study, a probabilistic method was proposed for an aircraft’s thermal protective layers. The uncertainties of material properties, geometric dimensions, and incoming flow environments were considered for the design inputs. To accelerate the design efficiency, Latin hypercube sampling and surrogate models were built based on finite element method calculations to enhance the simulation efficiency. Thus, the Monte Carlo method can be implemented with such a fast simulation method and produce a massive number of samples for the uncertainty quantification and sensitivity analysis, exploring their impact on the back temperature of the thermal protection layer. Compared to the deterministic method with the extreme deviation design, the probabilistic design yields a weight reduction of 15.61%. This indicates that probabilistic design is an efficient approach to enhance the performance of aircraft and reduce the overall weight of the aircraft. The general goal of this study is to provide a new design method for the coating film of thermal protection systems by considering multiple sources of uncertainties....
In recent years, with the rapid development of computer technology and artificial intelligence design technology, multiple possible design solutions can be quickly generated by transforming the experience and knowledge of structural design into computer executable rules and algorithms. To achieve intelligent design of aircraft engines, this paper proposes an encoding model for the turbine rotor structure of aircraft engines using geometric encoding technology. The turbine rotor structure of aircraft engines is divided into several units according to geometric similarity types, these units continue to be divided into attribute sets according to their functional types, connection relationships, and material properties. These attribute sets can be encoded using geometric encoding technology. The experiment simulated that these codes, for the point cloud modeling of turbine rotor structure, can be quickly achieved and they combine various algorithms to display the point cloud model of the turbine rotor in the Microsoft Visual studio MFC class library. The results show that by creating geometric codes for the turbine rotor of aircraft engines, it is possible to quickly create and display point cloud models of the turbine rotor structure, laying the foundation for subsequent application of machine learning to solve and find the optimal design solution....
Loading....